Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Journal of Southern Medical University ; (12): 966-975, 2022.
Article in Chinese | WPRIM | ID: wpr-941029

ABSTRACT

OBJECTIVE@#To explore the role of vasohibin-2 (VASH2) in regulation of proliferation and metastasis of cervical cancer cells.@*METHODS@#We analyzed the differentially expressed genes between cervical cancer cells with flotillin-1 overexpression and knockdown by RNA-seq combined with analysis of public databases. The expression levels of VASH2 were examined in normal cervical epithelial cells (HcerEpic), cervical cancer cell lines (HeLa, C-33A, Ca ski, SiHa and MS751) and fresh cervical cancer tissues with different lymph node metastasis status. We further tested the effects of lentivirus-mediated overexpression and interference of VASH2 on proliferation, migration, invasion and lymphatic vessel formation of the cervical cancer cells and detected the expression levels of key epithelial-mesenchymal transition (EMT) markers and TGF-β mRNA.@*RESULTS@#RNA-seq and analysis of public databases showed that VASH2 expression was significantly upregulated in cervical cancer cells exogenously overexpressing flotillin-1 (P < 0.05) and downregulated in cells with flotillin-1 knockdown (P < 0.05), and was significantly higher in cervical cancer tissues with lymph node metastasis than in those without lymph node metastasis (P < 0.01). In cervical cancer cell lines Ca Ski, SiHa, and MS751 and cervical cancer tissue specimens with lymph node metastasis, VASH2 expression was also significantly upregulated as compared with HcerEpic cells and cervical cancer tissues without lymph node metastasis (P < 0.05). Exogenous overexpression of VASH2 significantly promoted proliferation, migration, invasion and lymphatic vessel formation of cervical cancer cells, whereas these abilities were significantly inhibited in cells with VASH2 knockdown (P < 0.05). The cervical cancer cells overexpressing VASH2 showed significant down- regulation of e-cadherin and up- regulation of N-cadherin, Vimentin and VEGF-C, while the reverse changes were detected in cells with VASH2 knockdown (P < 0.05). TGF-β mRNA expression was significantly up-regulated in cervical cancer cells overexpressing VASH2 and down-regulated in cells with VASH2 knockdown (P < 0.001).@*CONCLUSION@#Flotillin-1 may participate in TGF-β signaling pathway-mediated EMT through its down-stream target gene VASH2 to promote the proliferation, migration, invasion and lymphatic vessel formation of cervical cancer cells in vitro.


Subject(s)
Female , Humans , Angiogenic Proteins/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Lymphatic Metastasis , RNA, Messenger , Transforming Growth Factor beta/metabolism , Uterine Cervical Neoplasms/pathology
2.
Indian J Biochem Biophys ; 2012 Oct; 49(5): 392-394
Article in English | IMSEAR | ID: sea-143562

ABSTRACT

The role of pro-angiogenic marker galectin-3 (GAL-3) was examined in differential diagnosis of follicular neoplasms of thyroid into histological subsets of follicular adenoma (FA), follicular carcinoma (FC) and follicular variant of papillary thyroid carcinoma (FVPTC). The study included 22 cases from January 2006 to June 2011 comprising of FA (n = 12), FC (n = 3) and FVPTC (n = 7). Immunohistochemical evaluation of GAL-3 was performed on representative histologic sections from the resected thyroid specimens. The proportion of stained cells and intensity of staining in tumor blood vessels were evaluated. GAL-3 expression showed that angiogenesis was prominent in malignancy (FC and FVPTC) and negative in non-neoplastic thyroid parenchyma and benign condition (FA). GAL-3 expression was found to differentiate benign from malignant follicular neoplasms. Focal and diffuse positivity for GAL-3 was found to be associated with FC and FVPTC respectively, thus GAL-3 can be used as a immunohistochemical marker in the differential diagnosis of follicular neoplasms of thyroid based on the type of expression. Limitation of this study was relatively less number of cases studied; however, this data need to be corroborated in larger cohort.


Subject(s)
Adenocarcinoma, Follicular/immunology , Angiogenic Proteins/metabolism , Galectin 3/immunology , Carcinoma, Papillary, Follicular/diagnosis , Carcinoma, Papillary, Follicular/immunology , Humans , Immunohistochemistry/methods , Thyroid Gland
SELECTION OF CITATIONS
SEARCH DETAIL